@inproceedings{06a4f28f72704aecb4dcd03a15b2a801,
title = "An ensemble model with hierarchical decomposition and aggregation for highly scalable and robust classification",
abstract = "This paper introduces an ensemble model that solves the binary classification problem by incorporating the basic Logistic Regression with the two recent advanced paradigms: Extreme gradient boosted decision trees (xgboost) and deep learning. To obtain the best result when integrating sub-models, we introduce a solution to split and select sets of features for the sub-model training. In addition to the ensemble model, we propose a flexible robust and highly scalable new scheme for building a composite classifier that tries to simultaneously implement multiple layers of model decomposition and outputs aggregation to maximally reduce both bias and variance (spread) components of classification errors. We demonstrate the power of our ensemble model to solve the problem of predicting the outcome of Hearthstone, a turn-based computer game, based on game state information. Excellent predictive performance of our model has been acknowledged by the second place scored in the final ranking among 188 competing teams.",
author = "Vu, {Quang Hieu} and Dymitr Ruta and Ling Cen",
note = "Publisher Copyright: {\textcopyright} 2017 PTI.; 2017 Federated Conference on Computer Science and Information Systems, FedCSIS 2017 ; Conference date: 03-09-2017 Through 06-09-2017",
year = "2017",
month = nov,
day = "10",
doi = "10.15439/2017F564",
language = "British English",
series = "Proceedings of the 2017 Federated Conference on Computer Science and Information Systems, FedCSIS 2017",
publisher = "Institute of Electrical and Electronics Engineers Inc.",
pages = "149--152",
editor = "Maria Ganzha and Leszek Maciaszek and Marcin Paprzycki",
booktitle = "Proceedings of the 2017 Federated Conference on Computer Science and Information Systems, FedCSIS 2017",
address = "United States",
}