An EDA based on local Markov property and Gibbs sampling

Siddhartha Shakya, Roberto Santana

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

24 Scopus citations

Abstract

The key ideas behind most of the recently proposed Markov networks based EDAs were to factorise the joint probability distribution in terms of the cliques in the undirected graph. As such, they made use of the global Markov property of the Markov network. Here we presents a Markov Network based EDA that exploits Gibbs sampling to sample from the Local Markov property, the Markovianity, and does not directly model the joint distribution. We call it Markovianity based Optimisation Algorithm. Some initial results on the performance of the proposed algorithm shows that it compares well with other Bayesian network based EDAs.

Original languageBritish English
Title of host publicationGECCO'08
Subtitle of host publicationProceedings of the 10th Annual Conference on Genetic and Evolutionary Computation 2008
PublisherAssociation for Computing Machinery (ACM)
Pages475-476
Number of pages2
ISBN (Print)9781605581309
DOIs
StatePublished - 2008
Event10th Annual Genetic and Evolutionary Computation Conference, GECCO 2008 - Atlanta, GA, United States
Duration: 12 Jul 200816 Jul 2008

Publication series

NameGECCO'08: Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation 2008

Conference

Conference10th Annual Genetic and Evolutionary Computation Conference, GECCO 2008
Country/TerritoryUnited States
CityAtlanta, GA
Period12/07/0816/07/08

Keywords

  • Estimation of distribution algorithms
  • Evolutionary computation
  • Markov networks
  • Probabilistic graphical models

Fingerprint

Dive into the research topics of 'An EDA based on local Markov property and Gibbs sampling'. Together they form a unique fingerprint.

Cite this