Air-liquid interface cultivation of Navicula incerta using hollow fiber membranes

Jia Xin Yap, C. P. Leo, Derek Juinn Chieh Chan, Nazlina Haiza Mohd Yasin, Pau Loke Show

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

Microalgae cultivation in open ponds requires a large footprint, while most photobioreactors need improvement in the ratio of surface to volume and energy consumption. In this study, polyethersulfone (PES) and poly(vinylidene fluoride) (PVDF) hollow fiber membranes with a large surface area were rearranged into open-ended and dead-ended configurations to improve the air-liquid interface cultivation of Navicula incerta. N. incerta were successfully grown on the porous membrane surface with the nutrients circulating inside the lumen. Fourier-transform infrared spectra showed the accumulation of polysaccharides, proteins and humic acids. Hydrophilic polysaccharides reduced water contact angles on PES and PVDF membranes to 37.2 ± 2.6° and 55.7 ± 3.3°, respectively. However, the porosity of PES (80.1 ± 1.1%) and PVDF (61.3 ± 4.5%) membranes were not significantly affected even after cultivation and harvesting of N. incerta. Scanning electron images further confirmed that N. incerta, cell debris and extracellular organic matter accumulated on the membrane. With large pores and a hydrophobic surface, PVDF hollow fiber membranes offered a greater improvement in N. incerta cell growth rate compared to PES hollow fiber membranes despite using different configurations. In the dead-ended configuration, they even attained the greatest improvement in N. incerta growth rate, up to 54.0%. However, PES hollow fiber membranes only achieved improvement in harvesting efficiency within the range of 18.7–38.0% due to weak cell adhesion. PVDF hollow fiber membranes significantly promoted the growth of microalgae N. incerta through the air-liquid interface system, leading to potential applications in wastewater treatment.

Original languageBritish English
Article number135625
JournalChemosphere
Volume307
DOIs
StatePublished - Nov 2022

Keywords

  • Air-liquid interface cultivation
  • Harvesting
  • Hollow fiber membranes
  • Microalgae

Fingerprint

Dive into the research topics of 'Air-liquid interface cultivation of Navicula incerta using hollow fiber membranes'. Together they form a unique fingerprint.

Cite this