Abstract
Diminishing sources of synthetic plastics and their unsustainable production processes have increased the demand for alternative biodegradable and sustainable polymers. Bacterial biopolymer-producing factories can carry out large-scale production of such alternatives using improved fermentation techniques, such as fed-batch and pulsed feeding of inducers, that can increase bacterial biopolymer accumulation. However, the successive downstream processing (DSP) techniques still pose challenges in making the production process both economically and environmentally sustainable. These challenges are mostly associated with biomass pre-treatment, the use of solvents, and the embedded parameters of the DSP techniques. Conventional halogenated/chlorinated solvents can be substituted with green solvents to yield PHAs of high purity (98%) for high-end applications and to establish a sustainable circular economy. As an economically and environmentally sustainable approach, the use of recycled waste as a substrate and greener extraction solvents for bacterial biopolymer production should be further explored for the efficient replacement of synthetic plastic production.
Original language | British English |
---|---|
Article number | 100631 |
Journal | Current Opinion in Green and Sustainable Chemistry |
Volume | 36 |
DOIs | |
State | Published - Aug 2022 |
Keywords
- Biopolymer
- Downstream processing
- Fermentation
- Polyhydroxyalkanoates
- Sustainable production