Achievable physical-layer security over composite fading channels

Osamah S. Badarneh, Paschalis C. Sofotasios, Sami Muhaidat, Simon L. Cotton, Khaled M. Rabie, Naofal Aldhahir

Research output: Contribution to journalArticlepeer-review

24 Scopus citations

Abstract

We investigate the physical layer security limits of Wyner’s wiretap model over Fisher-Snedecor F composite fading channels. F fading conditions have been recently shown to provide an accurate characterization of multipath fading and shadowing effects in emerging wireless transmission scenarios such as body centric, cellular and vehicular communications. To this end, we utilize a redefined analytic expression for the Fisher-Snedecor F distribution in order to ensure unconstrained validity and reliability when used in the analysis of various performance metrics of interest. In this context, we assume that the main channel (i.e., between the source and the legitimate destination) and the eavesdropper’s channel (i.e., between the source and the illegitimate destination) undergo independent quasi-static Fisher-Snedecor F composite fading. Novel exact analytic expressions are then derived for the corresponding average secrecy capacity (ASC), secure outage probability (SOP) and probability of strictly positive secrecy capacity (SPSC) along with their insightful asymptotic representations. In addition, analytical expressions for the ASC, SOP and SPSC over mixed fading channels such as Nakagami-m/Nakagami-m, Nakagami-m/Fisher-Snedecor F and Fisher-Snedecor F/Nakagami-m are derived. The new formulations are validated through comparisons with Monte-Carlo simulations and analyzed to gain useful insights into the impact of the fading parameters on the achievable accuracy and the overall system performance.

Original languageBritish English
Pages (from-to)195772-195787
Number of pages16
JournalIEEE Access
Volume8
DOIs
StatePublished - 2020

Keywords

  • Average secrecy capacity
  • Fisher-Snedecor F distribution
  • Physical layer security
  • Secure outage probability

Fingerprint

Dive into the research topics of 'Achievable physical-layer security over composite fading channels'. Together they form a unique fingerprint.

Cite this