@inproceedings{f2c9be4380a34efe9d447b9ab6efa04b,
title = "A temperature-dependent thermal model of IGBT modules suitable for circuit-level simulations",
abstract = "Thermal impedance of IGBT modules may vary with operating conditions due to that the thermal conductivity and heat capacity of materials are temperature dependent. This paper proposes a Cauer thermal model for a 1700 V/1000 A IGBT module with temperature-dependent thermal resistances and thermal capacitances. The temperature effect is investigated by Finite Element Method (FEM) simulation based on the geometry and material information of the IGBT module. The developed model is ready for circuit-level simulation to achieve an improved accuracy of the estimation on IGBT junction temperature and its relevant reliability aspect performance. A test bench is built up with an ultra-fast infrared (IR) camera to validate the proposed thermal impedance model.",
author = "Rui Wu and Huai Wang and Ke Ma and Pramod Ghimire and Francesco Iannuzzo and Frede Blaabjerg",
note = "Publisher Copyright: {\textcopyright} 2014 IEEE.",
year = "2014",
month = nov,
day = "11",
doi = "10.1109/ECCE.2014.6953793",
language = "British English",
series = "2014 IEEE Energy Conversion Congress and Exposition, ECCE 2014",
publisher = "Institute of Electrical and Electronics Engineers Inc.",
pages = "2901--2908",
booktitle = "2014 IEEE Energy Conversion Congress and Exposition, ECCE 2014",
address = "United States",
}