A Super-Hygroscopic Solar-Regenerated Alginate-Based Composite for Atmospheric Water Harvesting

Samar N. Abd Elwadood, Andreia S.F. Farinha, Yasser Al Wahedi, Ali Al Alili, Geert Jan Witkamp, Ludovic F. Dumée, Georgios N. Karanikolos

    Research output: Contribution to journalArticlepeer-review

    12 Scopus citations

    Abstract

    Global water scarcity is leading to increasingly tense competition across populations. In order to complement the largely fast-depleting fresh water sources and mitigate the challenges generated by brine discharge from desalination, atmospheric water harvesting (AWH) has emerged to support long-term water supply. This work presents a novel alginate-based hybrid material comprised of porous silico-aluminophosphate-34 (SAPO-34) as fast-transport channel medium as well as hydrophilicity and stability enhancer, and graphene-based sheets as light absorber for solar-enabled evaporation, both optimally incorporated in an alginate matrix, resulting in a composite sorbent capable of harvesting water from the atmosphere with a record intake of up to 6.85 gw gs−1. Natural sunlight is solely used to enable desorption achieving increase of the temperature of the developed network up to 60 °C and resulting in release of the sorbed water, with impurities content well below the World Health Organization (WHO) upper limits. After 30 cycles of sorption and desorption, the composite hydrogel displayed unchanged water uptake and stability. This work provides an impactful perspective toward sustainable generation of water from humidity without external energy consumption supporting the emergence of alternative water production solutions.

    Original languageBritish English
    Article number2400420
    JournalSmall
    Volume20
    Issue number37
    DOIs
    StatePublished - 12 Sep 2024

    Keywords

    • alginate hybridization
    • hygroscopic hydrogels
    • micro-channeling
    • moisture sorption
    • photothermal harvester
    • water harvesting

    Fingerprint

    Dive into the research topics of 'A Super-Hygroscopic Solar-Regenerated Alginate-Based Composite for Atmospheric Water Harvesting'. Together they form a unique fingerprint.

    Cite this