A procedure for encapsulation in microchannel

Y. F. Yap, J. C. Chai, N. T. Nguyen, T. N. Wong, L. Yobas

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

A fixed-grid approach for modeling the motion of a particle-encapsulated droplet carried by a pressure driven immiscible carrier fluid in a microchannel is presented. Three phases (the carrier fluid, the droplet and the particle), and two different moving boundaries (the droplet-carrier fluid and droplet-particle interfaces), are involved. This is a moving boundaries problem with the motion of the three phases strongly coupled. In the present article, the particle is assumed to be a fluid of high viscosity and constrained to move with rigid body motion. A combined formulation using one set of governing equations to treat the three phases is employed. The droplet-carrier fluid interface is represented and evolved using a level-set method with a mass correction scheme. Surface tension is modeled using the Continuum Surface Force model. An additional signed distance function is employed to define the droplet-particle interface. Its evolution is determined from the particle motion governed by the Newton-Euler equations. The governing equations are solved numerically using a Finite Volume method on a fixed Cartesian grid. For demonstration purpose, the flows of particle-encapsulated droplets through a constricted microchannel and through a microchannel system are presented.

Original languageBritish English
Title of host publication2007 Proceedings of the ASME/JSME Thermal Engineering Summer Heat Transfer Conference - HT 2007
Pages417-424
Number of pages8
DOIs
StatePublished - 2007
Event2007 ASME/JSME Thermal Engineering Summer Heat Transfer Conference, HT 2007 - Vancouver, BC, Canada
Duration: 8 Jul 200712 Jul 2007

Publication series

Name2007 Proceedings of the ASME/JSME Thermal Engineering Summer Heat Transfer Conference - HT 2007
Volume1

Conference

Conference2007 ASME/JSME Thermal Engineering Summer Heat Transfer Conference, HT 2007
Country/TerritoryCanada
CityVancouver, BC
Period8/07/0712/07/07

Fingerprint

Dive into the research topics of 'A procedure for encapsulation in microchannel'. Together they form a unique fingerprint.

Cite this