A Low-Phase-Noise 8 GHz Linear-Band Sub-Millimeter-Wave Phase-Locked Loop in 22 nm FD-SOI CMOS

Mamady Kebe, Mihai Sanduleanu

    Research output: Contribution to journalArticlepeer-review

    1 Scopus citations

    Abstract

    Low-phase noise and wideband phased-locked loops (PLLs) are crucial for high-data rate communication and imaging systems. Sub-millimeter-wave (sub-mm-wave) PLLs typically exhibit poor performance in terms of noise and bandwidth due to higher device parasitic capacitances, among other reasons. In this regard, a low-phase-noise, wideband, integer-N, type-II phase-locked loop was implemented in the 22 nm FD-SOI CMOS process. The proposed wideband linear differential tuning I/Q voltage-controlled oscillator (VCO) achieves an overall frequency range of 157.5–167.5 GHz with 8 GHz linear tuning and a phase noise of −113 dBc/Hz @ 100 KHz. Moreover, the fabricated PLL produces a phase noise less than −103 dBc/Hz @ 1 KHz and −128 dBc/Hz @ 100 KHz, corresponding to the lowest phase noise generated by a sub-millimeter-wave PLL to date. The measured RF output saturated power and DC power consumption of the PLL are 2 dBm and 120.75 mW, respectively, whereas the fabricated chip comprising a power amplifier and an integrated antenna occupies an area of 1.25 × 0.9 mm2.

    Original languageBritish English
    Article number1010
    JournalMicromachines
    Volume14
    Issue number5
    DOIs
    StatePublished - May 2023

    Keywords

    • frequency divider
    • phase noise
    • phase-locked loop
    • sub-millimeter-wave
    • voltage-controlled oscillator

    Fingerprint

    Dive into the research topics of 'A Low-Phase-Noise 8 GHz Linear-Band Sub-Millimeter-Wave Phase-Locked Loop in 22 nm FD-SOI CMOS'. Together they form a unique fingerprint.

    Cite this