A Joint Beamforming and Power-Splitter Optimization Technique for SWIPT in MISO-NOMA System

Haitham Al-Obiedollah, Kanapathippillai Cumanan, Haythem Bany Salameh, Sangarapillai Lambotharan, Yogachandran Rahulamathavan, Zhiguo Ding, Octavia A. Dobre

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

In this paper, we propose a joint beamforming and power-splitter optimization technique for simultaneous wireless power and information transfer in the downlink transmission of a multiple-input single-output (MISO) non-orthogonal multiple access (NOMA) system. Accordingly, each user employs a power splitter to decompose the received signal into two parts, namely, the information decoding and energy harvesting. The former part is used to decode the corresponding transmitted information, whereas the latter part is utilized for harvesting energy. For this system model, we solve an energy harvesting problem with a set of design constraints at the transmitter and the receiver ends. In particular, the beamforming vector and the power splitting ratio for each user are jointly designed such that the overall harvested power is maximized subject to minimum per-user rate requirements and the available power budget constraints at the base station. As the formulated problem turns out to be non-convex in terms of the design parameters, we propose a sequential convex approximation technique and demonstrate a superior performance compared to a baseline scheme.

Original languageBritish English
Article number9359739
Pages (from-to)33018-33029
Number of pages12
JournalIEEE Access
Volume9
DOIs
StatePublished - 2021

Keywords

  • energy harvesting
  • Non-orthogonal multiple access (NOMA)
  • simultaneous wireless power and information transfer (SWIPT)

Fingerprint

Dive into the research topics of 'A Joint Beamforming and Power-Splitter Optimization Technique for SWIPT in MISO-NOMA System'. Together they form a unique fingerprint.

Cite this