TY - GEN
T1 - A generic topology derivation method for single-phase converters with active capacitive DC-links
AU - Wang, Haoran
AU - Wang, Huai
AU - Zhu, Guorong
AU - Blaabjerg, Frede
N1 - Publisher Copyright:
© 2016 IEEE.
PY - 2016
Y1 - 2016
N2 - Many efforts have been made to improve the single-phase power converters with active capacitive DC-link. The purpose is to reduce the overall DC-link energy storage and to achieve a reliable and cost-effective capacitive DC-link solution. A few review papers have already discussed the existing capacitive DC-link solutions, but important aspects of the topology assessment, such as the total energy storage, overall capacitive energy buffer ratio, cost, and reliability are still not available. This paper proposes a generic topology derivation method of single-phase power converters with capacitive DC-links, which derives all existing topologies to our best knowledge, and identify a few new topologies. A reliability-oriented design process is applied to compare the cost of different solutions with the lifetime target of 10 years and 35 years, respectively. It reveals that the most cost-effective solutions varies with the lifetime target.
AB - Many efforts have been made to improve the single-phase power converters with active capacitive DC-link. The purpose is to reduce the overall DC-link energy storage and to achieve a reliable and cost-effective capacitive DC-link solution. A few review papers have already discussed the existing capacitive DC-link solutions, but important aspects of the topology assessment, such as the total energy storage, overall capacitive energy buffer ratio, cost, and reliability are still not available. This paper proposes a generic topology derivation method of single-phase power converters with capacitive DC-links, which derives all existing topologies to our best knowledge, and identify a few new topologies. A reliability-oriented design process is applied to compare the cost of different solutions with the lifetime target of 10 years and 35 years, respectively. It reveals that the most cost-effective solutions varies with the lifetime target.
UR - http://www.scopus.com/inward/record.url?scp=85015424842&partnerID=8YFLogxK
U2 - 10.1109/ECCE.2016.7854689
DO - 10.1109/ECCE.2016.7854689
M3 - Conference contribution
AN - SCOPUS:85015424842
T3 - ECCE 2016 - IEEE Energy Conversion Congress and Exposition, Proceedings
BT - ECCE 2016 - IEEE Energy Conversion Congress and Exposition, Proceedings
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2016 IEEE Energy Conversion Congress and Exposition, ECCE 2016
Y2 - 18 September 2016 through 22 September 2016
ER -