2D Ti3C2Tx-MXene nanosheets and graphene oxide based highly sensitive humidity sensor for wearable and flexible electronics

Waqas Waheed, Shoaib Anwer, Muhammad Umair Khan, Muhammad Sajjad, Anas Alazzam

    Research output: Contribution to journalArticlepeer-review

    16 Scopus citations

    Abstract

    To explore the potential of Ti3C2Tx-MXenes as an electrode over traditional metals, we designed a high-performance and cost-effective humidity sensor using 2D Ti3C2Tx MXene nanosheets (TMNSs) as electrodes and Graphene oxide (GO) as a sensing layer. The sensor was fabricated on a flexible and transparent Cyclic Olefin Copolymer (COC) substrate using UV-photolithography, spin coating, and spray coating techniques. Electrical impedance measurements demonstrated the sensor's remarkable sensitivity to humidity, with a response range of 6 % to 97 % at frequencies of 1 kHz and 10 kHz. The sensor exhibited fast response and recovery times of 0.8 s and 0.9 s, respectively, and maintained stable performance over 24 h. We further employed DFT simulations to establish the atomic level understanding of humidity sensing. The findings demonstrated the presence of a physical bond between the hydrogen (H) and oxygen (O) atoms, which are part of the water molecule and OH group, respectively, in the process of humidity sensing. Furthermore, the OH-configuration of graphene oxide (GO) acts as the main active site in humidity sensing, outperforming the O-configuration, due to its higher adsorption energy and charge transfer. Moreover, real-world applications for this 2D materials-based sensor were demonstrated, including non-contact proximity sensing and human breathing detection, demonstrating its potential. This study makes a substantial contribution to the development of low-cost humidity sensors based on 2D materials, with implications for a wide range of humidity sensing applications.

    Original languageBritish English
    Article number147981
    JournalChemical Engineering Journal
    Volume480
    DOIs
    StatePublished - 15 Jan 2024

    Keywords

    • Cyclic olefin copolymer
    • Graphene oxide
    • Humidity sensor
    • TiCT MXene nano sheets

    Fingerprint

    Dive into the research topics of '2D Ti3C2Tx-MXene nanosheets and graphene oxide based highly sensitive humidity sensor for wearable and flexible electronics'. Together they form a unique fingerprint.

    Cite this